Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
3 Biotech ; 13(11): 374, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37860288

RESUMO

Plant pathogens cause great economic losses in agriculture. To reduce damage, chemical pesticides have been frequently used, but these compounds in addition to causing risks to the environment and health, its continuous use has given rise to resistant phytopathogens, threatening the efficiency of control methods. One alternative for such a problem is the use of natural products with high antifungal activity and low toxicity. Here, we present the production, isolation, and identification of cyclopaldic acid, a bioactive compound produced by Penicillium sp. CRM 1540, a fungal strain isolated from Antarctic marine sediment. The crude extract was fractionated by reversed-phase chromatography and yielded 40 fractions, from which fraction F17 was selected. We used 1D and 2D Nuclear Magnetic Resonance analysis in DMSO-d6 and CDCl3, together with mass spectrometry, to identify the compound as cyclopaldic acid C11H10O6 (238 Da). The pure compound was evaluated for antimicrobial activity against phytopathogenic fungi of global agricultural importance, namely: Macrophomina phaseolina, Rhizoctonia solani, and Sclerotinia sclerotiorum. The antifungal assay revealed the potential of cyclopaldic acid, produced by Penicillium sp. CRM 1540, as a leading molecule against M. phaseolina and R. solani, with more than 90% of growth inhibition after 96h of contact with the fungal cells using 100 µg mL-1, and more than 70% using 50 µg mL-1. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03792-9.

2.
Environ Sci Pollut Res Int ; 30(45): 101250-101266, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37648922

RESUMO

This study aims at the application of a marine fungal consortium (Aspergillus sclerotiorum CRM 348 and Cryptococcus laurentii CRM 707) for the bioremediation of diesel oil-contaminated soil under microcosm conditions. The impact of biostimulation (BS) and/or bioaugmentation (BA) treatments on diesel-oil biodegradation, soil quality, and the structure of the microbial community were studied. The use of the fungal consortium together with nutrients (BA/BS) resulted in a TPH (Total Petroleum Hydrocarbon) degradation 42% higher than that obtained by natural attenuation (NA) within 120 days. For the same period, a 72 to 92% removal of short-chain alkanes (C12 to C19) was obtained by BA/BS, while only 3 to 65% removal was achieved by NA. BA/BS also showed high degradation efficiency of long-chain alkanes (C20 to C24) at 120 days, reaching 90 and 92% of degradation of icosane and heneicosane, respectively. In contrast, an increase in the levels of cyclosiloxanes (characterized as bacterial bioemulsifiers and biosurfactants) was observed in the soil treated by the consortium. Conversely, the NA presented a maximum of 37% of degradation of these alkane fractions. The 5-ringed PAH benzo(a)pyrene, was removed significantly better with the BA/BS treatment than with the NA (48 vs. 38 % of biodegradation, respectively). Metabarcoding analysis revealed that BA/BS caused a decrease in the soil microbial diversity with a concomitant increase in the abundance of specific microbial groups, including hydrocarbon-degrading (bacteria and fungi) and also an enhancement in soil microbial activity. Our results highlight the great potential of this consortium for soil treatment after diesel spills, as well as the relevance of the massive sequencing, enzymatic, microbiological and GC-HRMS analyses for a better understanding of diesel bioremediation.

3.
Chemosphere ; 286(Pt 2): 131752, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34426136

RESUMO

Over recent decades, hydrocarbon concentrations have been augmented in soil and water, mainly derived from accidents or operations that input crude oil and petroleum into the environment. Different techniques for remediation have been proposed and used to mitigate oil contamination. Among the available environmental recovery approaches, bioremediation stands out since these hydrocarbon compounds can be used as growth substrates for microorganisms. In turn, microorganisms can play an important role with significant contributions to the stabilization of impacted areas. In this review, we present the current knowledge about responses from natural microbial communities (using DNA barcoding, multiomics, and functional gene markers) and bioremediation experiments (microcosm and mesocosm) conducted in the presence of petroleum and chemical dispersants in different samples, including soil, sediment, and water. Additionally, we present metabolic mechanisms for aerobic/anaerobic hydrocarbon degradation and alternative pathways, as well as a summary of studies showing functional genes and other mechanisms involved in petroleum biodegradation processes.


Assuntos
Microbiota , Poluição por Petróleo , Petróleo , Poluentes do Solo , Biodegradação Ambiental , Hidrocarbonetos , Poluição por Petróleo/análise , Microbiologia do Solo , Poluentes do Solo/análise
4.
J Microbiol ; 59(7): 634-643, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33990911

RESUMO

Soil contamination with diesel oil is quite common during processes of transport and storage. Bioremediation is considered a safe, economical, and environmentally friendly approach for contaminated soil treatment. In this context, studies using hydrocarbon bioremediation have focused on total petroleum hydrocarbon (TPH) analysis to assess process effectiveness, while ecotoxicity has been neglected. Thus, this study aimed to select a microbial consortium capable of detoxifying diesel oil and apply this consortium to the bioremediation of soil contaminated with this environmental pollutant through different bioremediation approaches. Gas chromatography (GC-FID) was used to analyze diesel oil degradation, while ecotoxicological bioassays with the bioindicators Artemia sp., Aliivibrio fischeri (Microtox), and Cucumis sativus were used to assess detoxification. After 90 days of bioremediation, we found that the biostimulation and biostimulation/bioaugmentation approaches showed higher rates of diesel oil degradation in relation to natural attenuation (41.9 and 26.7%, respectively). Phytotoxicity increased in the biostimulation and biostimulation/bioaugmentation treatments during the degradation process, whereas in the Microtox test, the toxicity was the same in these treatments as that in the natural attenuation treatment. In both the phytotoxicity and Microtox tests, bioaugmentation treatment showed lower toxicity. However, compared with natural attenuation, this approach did not show satisfactory hydrocarbon degradation. Based on the microcosm experiments results, we conclude that a broader analysis of the success of bioremediation requires the performance of toxicity bioassays.


Assuntos
Biodegradação Ambiental , Gasolina , Hidrocarbonetos/metabolismo , Consórcios Microbianos/fisiologia , Poluentes do Solo/metabolismo , Solo/química , Bactérias/metabolismo , Fungos/metabolismo , Poluentes do Solo/toxicidade
5.
Food Res Int ; 139: 109944, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33509497

RESUMO

The extracellular serine protease produced by Acremonium sp. L1-4B isolated from the Antarctic continent, was purified and used for the proteolysis of bovine and caprine sodium caseinate. Protein hydrolysates were evaluated in vitro to determine their antioxidant and antihypertensive potential, and later characterized by mass spectrometry. Bovine and caprine hydrolysates produced over 24 h showed a higher content of copper chelation (25.8 and 31.2% respectively), also at this time the ABTS+• scavenging was 65.2% (bovine sample) and 67.5% (caprine sample), and bovine caseinate hydrolysate (8 h) exhibited higher iron chelation capacity (43.1%). Statistically (p < 0.05), caprine caseinate hydrolysates showed relatively higher antioxidant potential in this study. All hydrolysates showed antihypertensive potential; however peptides released from caprine caseinate after 8 h of hydrolysis were able to inhibit 75% of angiotensin-converting enzyme (ACE) activity. Nano-ESI-Q-TOF-MS/MS analysis prospected a total of 23 different peptide sequences in the bovine hydrolysate fraction, originated from the αS1- and ß-casein chain, whilst in caprine hydrolysate, 31 sequences were detected, all from ß-casein. The low molecular weight bovine and caprine hydrolysates obtained in this research have the potential to act in the prevention of disorders caused by oxidative reactions and in the regulation of blood pressure. These findings support the development of new functional food and nutraceutical formulations.


Assuntos
Caseínas , Peptídeo Hidrolases , Inibidores da Enzima Conversora de Angiotensina , Animais , Bovinos , Fungos , Cabras , Peptídeos , Espectrometria de Massas em Tandem
6.
Prep Biochem Biotechnol ; 51(3): 277-288, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32921254

RESUMO

L-asparaginase (ASNase) is an essential drug in the treatment of acute lymphoblastic leukemia (ALL). Commercial bacterial ASNases increase patient survival, but the consequent immunological reactions remain a challenge. Yeasts ASNase is closer to human congeners and could lead to lower side effects. Among 134 yeast strains isolated from marine-sediments in King George Island, Antarctica, nine were L-asparaginase producing yeasts and glutaminase-free. Leucosporidium muscorum CRM 1648 yielded the highest ASNase activity (490.41 U.L-1) and volumetric productivity (5.12 U.L-1 h-1). Sucrose, yeast extract and proline were the best carbon and nitrogen sources to support growth and ASNase production. A full factorial design analysis pointed the optimum media condition for yeast growth and ASNase yield: 20 g L-1 sucrose, 15 g L-1 yeast extract and 20 g L-1 proline, which resulted in 4582.5 U L-1 and 63.64 U L-1 h-1 of ASNase and volumetric productivity, respectively. Analysis of temperature, pH, inoculum and addition of seawater indicated the best condition for ASNase production by this yeast: 12-15 °C, pH 5.5-6.5 and seawater >25% (v/v). Inoculum concentration seems not to interfere. This work is pioneer on the production of ASNase by cold-adapted yeasts, highlighting the potential of these microbial resources as a source of glutaminase-free L-asparaginase for commercial purposes.


Assuntos
Asparaginase/química , Basidiomycota/metabolismo , Biotecnologia/métodos , Sedimentos Geológicos/química , Glutaminase/química , Regiões Antárticas , Antineoplásicos/farmacologia , Biomassa , Carbono/química , Geografia , Concentração de Íons de Hidrogênio , Prolina/química , Análise de Regressão , Água do Mar , Sacarose/química , Temperatura
7.
Chemosphere ; 267: 129190, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33316621

RESUMO

The combination of different microorganisms and their metabolisms makes the use of microbial consortia in bioremediation processes a useful approach. In this sense, this study aimed at structuring and selecting a marine microbial consortium for Remazol Brilliant Blue R (RBBR) detoxification and decolorization. Experimental design was applied to improve the culture conditions, and metatranscriptomic analysis to understand the enzymatic pathways. A promising consortium composed of Mucor racemosus CBMAI 847, Marasmiellus sp. CBMAI 1062, Bacillus subtilis CBMAI 707, and Dietzia maris CBMAI 705 was selected. This consortium showed 52% of detoxification and 86% of decolorization in the validation assays after seven days of incubation in the presence of 500 ppm of RBBR. Reduction in RBBR color and toxicity were achieved by biosorption and microbial metabolisms. Metatranscriptomic data indicate that the consortium was able to decolorize and breakdown the RBBR molecule using a coordinated action of oxidases, oxygenases, and hydrolases. Epoxide hydrolases and glyoxalases expression could be associated with the decrease in toxicity. The efficiency of this marine microbial consortium suggests their use in bioremediation processes of textile effluents.


Assuntos
Corantes , Consórcios Microbianos , Actinobacteria , Biodegradação Ambiental , Mucor , Têxteis
8.
Microorganisms ; 8(8)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751125

RESUMO

Glacial retreat is one of the most conspicuous signs of warming in Antarctic regions. Glacier soils harbor an active microbial community of decomposers, and under the continuous retraction of glaciers, the soil starts to present a gradient of physical, chemical, and biological factors reflecting regional changes over time. Little is known about the biological nature of fungi in Antarctic glacier soils. In this sense, this work aimed at studying the behavior of fungal community structure from samples of glacier soil collected after glacial retreat (Collins Glacier). A total of 309 fungi distributed in 19 genera were obtained from eleven soil samples. Representatives of the genera Pseudogymnoascus (Ascomycota) and Mortierella (Mortierellomycota) were the most abundant isolates in all samples. The data revealed the presence of filamentous fungi belonging to the phylum Basidiomycota, rarely found in Antarctica. Analysis of the generalized linear models revealed that the distance from the glacier as well as phosphorus and clay were able to modify the distribution of fungal species. Environmental variations proved to have influenced the genera Pseudogymnoascus and Pseudeutorium.

9.
Food Chem ; 280: 175-186, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30642484

RESUMO

Utilization of marine algae has increased considerably over the past decades, since biodiversity within brown, red and green marine algae offers possibilities of finding a variety of bioactive compounds. Marine algae are rich sources of dietary fibre. The remarkable positive effects of seaweed dietary fibre on human body are related to their prebiotic activity over the gastrointestinal tract (GIT) microbiota. However, dietary modulation of microorganisms present in GIT can be influenced by different factors such as type and source of the dietary fibre, their molecular weight, type of extraction and purification methods employed, composition and modification of polysaccharide and oligosaccharide. This review will demonstrate evidence that polysaccharides and oligosaccharides from marine algae can be used as prebiotics, emphasizing their use in human health, their application as food and other possible applications. Furthermore, an important approach of microbial enzymes employment during extraction, modification or production of those prebiotics is highlighted.


Assuntos
Clorófitas/metabolismo , Oligossacarídeos/metabolismo , Polissacarídeos/metabolismo , Prebióticos/análise , Alga Marinha/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Oligossacarídeos/química , Oligossacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/farmacologia , Rodófitas/metabolismo
10.
Microb Ecol ; 77(1): 12-24, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29916010

RESUMO

Extreme environments such as the Antarctic can lead to the discovery of new microbial taxa, as well as to new microbial-derived natural products. Considering that little is known yet about the diversity and the genetic resources present in these habitats, the main objective of this study was to evaluate the fungal communities from extreme environments collected at Aldmiralty Bay (Antarctica). A total of 891 and 226 isolates was obtained from soil and marine sediment samples, respectively. The most abundant isolates from soil samples were representatives of the genera Leucosporidium, Pseudogymnoascus, and a non-identified Ascomycota NIA6. Metschnikowia sp. was the most abundant taxon from marine samples, followed by isolates from the genera Penicillium and Pseudogymnoascus. Many of the genera were exclusive in marine sediment or terrestrial samples. However, representatives of eight genera were found in both types of samples. Data from non-metric multidimensional scaling showed that each sampling site is unique in their physical-chemical composition and fungal community. Biotechnological potential in relation to enzymatic production at low/moderate temperatures was also investigated. Ligninolytic enzymes were produced by few isolates from root-associated soil. Among the fungi isolated from marine sediments, 16 yeasts and nine fungi showed lipase activity and three yeasts and six filamentous fungi protease activity. The present study permitted increasing our knowledge on the diversity of fungi that inhabit the Antarctic, finding genera that have never been reported in this environment before and discovering putative new species of fungi.


Assuntos
Fungos/classificação , Fungos/isolamento & purificação , Sedimentos Geológicos/microbiologia , Água do Mar/microbiologia , Microbiologia do Solo , Regiões Antárticas , Ascomicetos/classificação , Ascomicetos/isolamento & purificação , Basidiomycota/classificação , Basidiomycota/isolamento & purificação , Baías , Biodiversidade , Temperatura Baixa , Extremófilos , Fungos/enzimologia , Fungos/genética , Ilhas , Lipase/metabolismo , Peptídeo Hidrolases/metabolismo , Filogenia , Especificidade da Espécie
11.
AMB Express ; 7(1): 222, 2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29264716

RESUMO

Laccases are multicopper oxidases that are able to catalyze reactions involving a range of substrates, including phenols and amines, and this ability is related to the existence of different laccases. Basidiomycetes usually have more than one gene for laccase, but until now, this feature has not been demonstrated in a marine-derived fungus. Peniophora sp. CBMAI 1063 is a basidiomycete fungus isolated from a marine sponge that exhibits the ability to secrete significant amounts of laccase in saline conditions. In the present study, we identified laccase sequences from the transcriptome of Peniophora sp. CBMAI 1063 and used them to perform different molecular in silico analyses. The results revealed the presence of at least eight putative genes, which may encode ten different laccases with peptide lengths ranging from 482 to 588 aa and molecular weights ranging from 53.5 to 64.4 kDa. These laccases seem to perform extracellular activities, with the exception of one that may represent an intracellular laccase. The 10 predicted laccases expressed by Peniophora sp. CBMAI 1063 in laccase-induced media showed different patterns of N-glycosylation and isoelectric points and are divided into two classes based on the residue associated with the regulation of the redox potential of the enzyme. None of the predicted laccases showed more than 61% similarity to other fungal laccases. Based on the differences among the laccases expressed by Peniophora sp. CBMAI 1063, this marine-derived basidiomycete represents a valuable resource with strong potential for biotechnological exploitation.

12.
Crit Rev Biotechnol ; 37(1): 82-99, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26694875

RESUMO

l-asparaginase (l-asparagine amino hydrolase, E.C.3.5.1.1) is an enzyme clinically accepted as an antitumor agent to treat acute lymphoblastic leukemia and lymphosarcoma. It catalyzes l-asparagine (Asn) hydrolysis to l-aspartate and ammonia, and Asn effective depletion results in cytotoxicity to leukemic cells. Microbial l-asparaginase (ASNase) production has attracted considerable attention owing to its cost effectiveness and eco-friendliness. The focus of this review is to provide a thorough review on microbial ASNase production, with special emphasis to microbial producers, conditions of enzyme production, protein engineering, downstream processes, biochemical characteristics, enzyme stability, bioavailability, toxicity and allergy potential. Some issues are also highlighted that will have to be addressed to achieve better therapeutic results and less side effects of ASNase use in cancer treatment: (a) search for new sources of this enzyme to increase its availability as a drug; (b) production of new ASNases with improved pharmacodynamics, pharmacokinetics and toxicological profiles, and (c) improvement of ASNase production by recombinant microorganisms. In this regard, rational protein engineering, directed mutagenesis, metabolic flux analysis and optimization of purification protocols are expected to play a paramount role in the near future.


Assuntos
Antineoplásicos , Asparaginase , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/uso terapêutico , Asparaginase/química , Asparaginase/metabolismo , Asparaginase/uso terapêutico , Bactérias/metabolismo , Composição de Medicamentos , Fungos/metabolismo , Engenharia de Proteínas
13.
Environ Microbiol Rep ; 8(5): 874-885, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27518570

RESUMO

Antarctic terrestrial ecosystems are largely dominated by lichens, while shallow coastal environments are mainly covered by macroalgae. The aim of this study was to isolate and to evaluate the diversity of yeasts in different species of macroalgae and lichens collected in South Shetland Islands, Antarctica. A total of 405 yeasts were recovered (205 from macroalgae and 200 from lichens). The yeast community from macroalgae was most diversity than the yeast community from lichen. The dominance index was similar for both substrates. A total of 24 taxa from macroalgae and 18 from lichens were identified, and only 5 were common to both substrates. Metschnikowia australis, Mrakia sp., Rhodotorula glacialis and Glaciozyma litorale were the most abundant yeasts in macroalgae and Cryptococcus victoriae, Rhodotorula laryngis, Rhodotorula arctica, Trichosporon sp. 1 and Mrakia sp. were the most abundant in lichens. Based on molecular and phylogenetic analyses, four yeast from macroalgae and six from lichens were considered potential new species. This is the first study to report the yeast communities from the Antarctic macroalgae Himantothallus grandifolius and lichen Ramalina terebrata. Results suggest that Antarctic phyco and lichensphere represent a huge substrate for cold-adapted yeasts and enhanced the knowledge of the microbiota from extreme environments.

14.
Microbiology (Reading) ; 162(7): 1147-1156, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27170376

RESUMO

Pressmud is a substrate derived from sugarcane juice filtrate, and around 26-40 kg of this residue are produced per ton of sugarcane. It is mainly used as fertilizer in crops, and its application in the field is often made without any prior treatment, but, in this research, it was studied for the risk this practice poses for human health. This research was stimulated by previous results indicating the presence of opportunistic pathogens in residues used in various composting systems and the extensive use of fresh pressmud in agriculture. Here, It was assessed the fungal diversity present in both fresh and composting pressmud using 454 pyrosequencing. In addition, heat-tolerant fungi were isolated and surveyed for their enzymatic repertoire of biomass-degrading enzymes (cellulase, xylanase, laccase and polygalacturonase). A wide range of opportunistic pathogens was found among the most abundant taxa in the fresh pressmud, such as Lomentospora prolificans (43.13 %), Trichosporon sp. (10.07 %), Candida tropicalis (7.91 %), and Hormographiella aspergillata (8.19 %). This indicates that fresh pressmud might be a putative source of human pathogenic fungi, presenting a potential threat to human health if applied as fertilizer without any treatment. With regard to the heat-tolerant fungi found in this substrate, all the 110 isolates screened were able to produce at least one of the tested enzymes. The pressmud composting process not only effectively reduces the load of pathogenic fungi, but also creates an interesting environment for fungi able to produce thermostable hydrolytic and oxidative enzymes with biotechnological applications.


Assuntos
Agaricales/isolamento & purificação , Ascomicetos/isolamento & purificação , Candida tropicalis/isolamento & purificação , Saccharum/microbiologia , Microbiologia do Solo , Trichosporon/isolamento & purificação , Agaricales/genética , Ascomicetos/genética , Candida tropicalis/genética , Celulase/genética , DNA Intergênico/genética , Endo-1,4-beta-Xilanases/genética , Humanos , Lacase/genética , Poligalacturonase/genética , Solo , Trichosporon/genética
15.
AMB Express ; 5: 19, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25852996

RESUMO

The capability of the fungi Nigrospora sp. CBMAI 1328 and Arthopyrenia sp. CBMAI 1330 isolated from marine sponge to synthesise laccases (Lcc) in the presence of the inducer copper (1-10 µM) was assessed. In a liquid culture medium supplemented with 5 µM of copper sulphate after 5 days of incubation, Nigrospora sp. presented the highest Lcc activity (25.2 U·L(-1)). The effect of copper on Lcc gene expression was evaluated by reverse transcriptase polymerase chain reaction. Nigrospora sp. showed the highest gene expression of Lcc under the same conditions of Lcc synthesis. The highest Lcc expression by the Arthopyrenia sp. was detected at 96 h of incubation in absence of copper. Molecular approaches allowed the detection of Lcc isozymes and suggest the presence of at least two undescribed putative genes. Additionally, Lcc sequences from the both fungal strains clustered with other Lcc sequences from other fungi that inhabit marine environments.

16.
Fungal Genet Biol ; 60: 2-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23872281

RESUMO

Fungi are a diverse group of organisms with an overall global number of 1.5M up to 3.3M species on Earth. Besides their ecological roles as decomposers, fungi are important in several aspects of applied research. Here, we review how culture collections may promote the knowledge on diversity, conservation and biotechnological exploitation of fungi. The impact of fungi diversity on biotechnological studies is discussed. We point out the major roles of microbial repositories, including fungal preservation, prospecting, identification, authentication and supply. A survey on the World Data Center for Microorganisms (WDCM) powered by the World Federation for Culture Collections and on the Genetic Heritage Management Council (CGEN) database revealed that 46 Brazilian culture collections registered in these databases are dedicate to preserving fungi. Most of these culture collections are located in the Southeast of Brazil. This scenario also demonstrates that Brazil has many collections focused on fungal strains, but the lack of up-to-date information in WDCM as well as of a solid national platform for culture collections registration do not allow accurate assessment of fungal preservation.


Assuntos
Biotecnologia , Fungos/classificação , Biodiversidade , Brasil , Criopreservação
17.
Mar Biotechnol (NY) ; 15(1): 97-103, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22790719

RESUMO

Marine fungi belonging to the genera Aspergillus, Penicillium, Cladosporium, and Bionectria catalyzed the biotransformation of phenylacetonitrile to 2-hydroxyphenylacetic acid. Eight marine fungi, selected and cultured with phenylacetonitrile in liquid mineral medium, catalyzed it quantitative biotransformation to 2-hydroxyphenylacetic acid. In this study, the nitrile group was firstly hydrolysed, and then, the aromatic ring was hydroxylated, producing 2-hydroxyphenylacetic acid with 51 % yield isolated. In addition, the 4-fluorophenylacetonitrile was exclusively biotransformed to 4-fluorophenylacetic acid by Aspergillus sydowii Ce19 (yield = 51 %). The enzymatic biotransformation of nitriles is not trivial, and here, we describe an efficient method for production of phenylacetic acids in mild conditions.


Assuntos
Acetonitrilas/metabolismo , Biotransformação/fisiologia , Fungos/fisiologia , Fenilacetatos/metabolismo , Catálise , Fungos/crescimento & desenvolvimento , Fungos/metabolismo , Hidrólise , Hidroxilação , Biologia Marinha , Fenilacetatos/isolamento & purificação
18.
PLoS One ; 7(10): e46060, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23056233

RESUMO

BACKGROUND: Independent surveys across the globe led to the proposal of a new basidiomycetous yeast genus within the Bulleromyces clade of the Tremellales, Bandoniozyma gen. nov., with seven new species. METHODOLOGY/PRINCIPAL FINDINGS: The species were characterized by multiple methods, including the analysis of D1/D2 and ITS nucleotide sequences, and morphological and physiological/biochemical traits. Most species can ferment glucose, which is an unusual trait among basidiomycetous yeasts. CONCLUSIONS/SIGNIFICANCE: In this study we propose the new yeast genus Bandoniozyma, with seven species Bandoniozyma noutii sp. nov. (type species of genus; CBS 8364(T)  =  DBVPG 4489(T)), Bandoniozyma aquatica sp. nov. (UFMG-DH4.20(T)  =  CBS 12527(T)  =  ATCC MYA-4876(T)), Bandoniozyma complexa sp. nov. (CBS 11570(T)  =  ATCC MYA-4603(T)  =  MA28a(T)), Bandoniozyma fermentans sp. nov. (CBS 12399(T)  =  NU7M71(T)  =  BCRC 23267(T)), Bandoniozyma glucofermentans sp. nov. (CBS 10381(T)  =  NRRL Y-48076(T)  =  ATCC MYA-4760(T)  =  BG 02-7-15-015A-1-1(T)), Bandoniozyma tunnelae sp. nov. (CBS 8024(T)  =  DBVPG 7000(T)), and Bandoniozyma visegradensis sp. nov. (CBS 12505(T)  =  NRRL Y-48783(T)  =  NCAIM Y.01952(T)).


Assuntos
Basidiomycota/classificação , Basidiomycota/genética , DNA Fúngico/genética , Filogenia , Sequência de Bases , Basidiomycota/metabolismo , Núcleo Celular/genética , Citocromos b/genética , DNA Fúngico/química , DNA Mitocondrial/química , DNA Mitocondrial/genética , DNA Espaçador Ribossômico/genética , Fermentação , Dados de Sequência Molecular , Fator 1 de Elongação de Peptídeos/genética , RNA Ribossômico/genética , Análise de Sequência de DNA , Especificidade da Espécie , Leveduras/classificação , Leveduras/genética , Leveduras/metabolismo
19.
Mar Biotechnol (NY) ; 14(4): 396-401, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22653656

RESUMO

Nine marine fungi (Aspergillus sclerotiorum CBMAI 849, Aspergillus sydowii Ce19, Beauveria felina CBMAI 738, Mucor racemosus CBMAI 847, Penicillium citrinum CBMAI 1186, Penicillium miczynskii Ce16, P. miczynskii Gc5, Penicillium oxalicum CBMAI 1185, and Trichoderma sp. Gc1) catalyzed the asymmetric bioconversion of iodoacetophenones 1-3 to corresponding iodophenylethanols 6-8. All the marine fungi produced exclusively (S)-ortho-iodophenylethanol 6 and (S)-meta-iodophenylethanol 7 in accordance to the Prelog rule. B. felina CBMAI 738, P. miczynskii Gc5, P. oxalicum CBMAI 1185, and Trichoderma sp. Gc1 produced (R)-para-iodophenylethanol 8 as product anti-Prelog. The bioconversion of para-iodoacetophenone 3 with whole cells of P. oxalicum CBMAI 1185 showed competitive reduction-oxidation reactions.


Assuntos
Aspergillus/metabolismo , Compostos de Iodo/metabolismo , Cetonas/metabolismo , Penicillium/metabolismo , Trichoderma/metabolismo , Microbiologia da Água , Aspergillus/classificação , Biotransformação , Oceanos e Mares , Penicillium/classificação , Especificidade da Espécie , Trichoderma/classificação
20.
Microb Ecol ; 63(3): 565-77, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21938508

RESUMO

The chemical ecology and biotechnological potential of metabolites from endophytic and rhizosphere fungi are receiving much attention. A collection of 17 sugarcane-derived fungi were identified and assessed by PCR for the presence of polyketide synthase (PKS) genes. The fungi were all various genera of ascomycetes, the genomes of which encoded 36 putative PKS sequences, 26 shared sequence homology with ß-ketoacyl synthase domains, while 10 sequences showed homology to known fungal C-methyltransferase domains. A neighbour-joining phylogenetic analysis of the translated sequences could group the domains into previously established chemistry-based clades that represented non-reducing, partially reducing and highly reducing fungal PKSs. We observed that, in many cases, the membership of each clade also reflected the taxonomy of the fungal isolates. The functional assignment of the domains was further confirmed by in silico secondary and tertiary protein structure predictions. This genome mining study reveals, for the first time, the genetic potential of specific taxonomic groups of sugarcane-derived fungi to produce specific types of polyketides. Future work will focus on isolating these compounds with a view to understanding their chemical ecology and likely biotechnological potential.


Assuntos
Proteínas Fúngicas/genética , Fungos/enzimologia , Variação Genética , Policetídeo Sintases/genética , Saccharum/microbiologia , Sequência de Aminoácidos , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Dados de Sequência Molecular , Filogenia , Policetídeo Sintases/química , Policetídeo Sintases/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...